Large language models (LLMs) have been shown to be able to perform new tasks based on a few demonstrations or natural language instructions. While these capabilities have led to widespread adoption, most LLMs are developed by resource-rich organizations and are frequently kept from the public. As a step towards democratizing this powerful technology, we present BLOOM, a 176B-parameter open-access language model designed and built thanks to a collaboration of hundreds of researchers. BLOOM is a decoder-only Transformer language model that was trained on the ROOTS corpus, a dataset comprising hundreds of sources in 46 natural and 13 programming languages (59 in total). We find that BLOOM achieves competitive performance on a wide variety of benchmarks, with stronger results after undergoing multitask prompted finetuning. To facilitate future research and applications using LLMs, we publicly release our models and code under the Responsible AI License.
translated by 谷歌翻译
过去的几年见证了基于变压器的模型的成功,其规模和应用方案继续积极发展。变压器模型的当前景观越来越多样化:该模型大小差异很大,最大的参数是最大的。模型特性由于特征的混合物所引入的稀疏性而有所不同。目标应用程序方案可以是关键延迟或面向吞吐量的情况;部署硬件可以是具有不同类型的内存和存储等单身或多GPU系统。随着多样性的增加和变压器模型的快速发展速度,设计高性能和高效的推理系统非常具有挑战性。在本文中,我们提出了DeepSpeed推断,这是用于解决上述挑战的变压器模型推理的全面系统解决方案。深速推理包括(1)一种多GPU推理解决方案,可最大程度地减少潜伏度,同时最大化密集和稀疏变压器模型的吞吐量,当它们适合聚集的GPU内存时,以及(2)一种异质推理解决方案,该解决方案利用CPU和NVME内存中的CPU和NVME内存。除了GPU内存和计算以使高推理吞吐量具有不适合聚集GPU内存的大型推理吞吐量。对于面向延迟的方案,深速推理可将延迟降低到最新的7倍,而对于面向吞吐量的方案,延迟的潜伏期将延迟减少到1.5倍以上。此外,它通过利用数百个GPU来实现实时延迟约束下的参数量表推断,这是一个前所未有的推理。它可以比仅使用GPU的解决方案更大的25倍模型,同时提供84个TFLOPS(超过50美元的A6000峰值)。
translated by 谷歌翻译
随着巨型密集模型的训练在当今硬件资源的可用性和能力方面达到了界限,由于其质量降低了大量培训成本,因此Experts(MOE)模型成为最有前途的模型体系结构之一等效密集模型。它的培训成本节省从编码器模型(先前的工作)展示到自动攻击性语言模型的5倍(这项工作以及并行探索)。但是,由于模型的规模和独特的架构,如何提供快速MOE模型推理仍然具有挑战性和未解决,从而限制了其实际用途。为了解决这个问题,我们提出了DeepSpeed-Moe,这是DeepSpeed库的一部分,包括新型MOE架构设计和模型压缩技术,将MOE模型大小降低到3.7倍,以及一个,以及一个与现有的MOE推理解决方案相比,高度优化的推理系统可提供7.3倍的延迟和成本。 DeepSpeed-Moe提供了前所未有的量表和效率,可与质量等效的密集模型相比,提供高达4.5倍和9倍的推理的大型MOE模型。我们希望我们的创新和系统有助于在大型模型景观中打开通往新方向的有前途的途径,从密集到稀疏的MOE模型转变,在这种模型中,培训和部署具有更少资源的更高质量模型变得更加广泛。
translated by 谷歌翻译
Large deep learning models offer significant accuracy gains, but training billions to trillions of parameters is challenging. Existing solutions such as data and model parallelisms exhibit fundamental limitations to fit these models into limited device memory, while obtaining computation, communication and development efficiency. We develop a novel solution, Zero Redundancy Optimizer (ZeRO), to optimize memory, vastly improving training speed while increasing the model size that can be efficiently trained. ZeRO eliminates memory redundancies in data-and model-parallel training while retaining low communication volume and high computational granularity, allowing us to scale the model size proportional to the number of devices with sustained high efficiency. Our analysis on memory requirements and communication volume demonstrates: ZeRO has the potential to scale beyond 1 Trillion parameters using today's hardware.We implement and evaluate ZeRO: it trains large models of over 100B parameter with super-linear speedup on 400 GPUs, achieving throughput of 15 Petaflops. This represents an 8x increase in model size and 10x increase in achievable performance over state-of-the-art. In terms of usability, ZeRO can train large models of up to 13B parameters (e.g., larger than Megatron GPT 8.3B and T5 11B) without requiring model parallelism which is harder for scientists to apply. Last but not the least, researchers have used the system breakthroughs of ZeRO to create the world's largest language model (17B parameters) with record breaking accuracy.
translated by 谷歌翻译